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Abstract. We relate the dual symmetry of the chiral field to the dual symmetry of the first 
and second forms on pseudospherical surfaces in asymptotic coordinates. Every given (up 
to conformal similarity) solution of chiral field on 0 ( 3 ) / 0 ( 2 )  sphere has been put into 
one-to-one correspondence with the Gauss image o f a  definite (up to homothetic transforma- 
tions) pseudospherical surface. Thus we establish a gauge covariant formulation which 
unifies the chiral field and the differential forms on the pseudospherical surface. Then we 
get the explicit geometrical pictures and the covariant relations for Backlund transforma- 
tions, Riccati equations and an infinite number of conserved currents in both cases. The 
SO(3) and SO(2, I )  v-model are also related by dual symmetry. 

1. Introduction 

The well known completely integrable systems: chiral models and AKNS systems share 
many common features such as linear scattering equations, Backlund transformations 
( BTS), Riccati equations (RES), an infinite number of conservation laws, etc. (Pohlmeyer 
1976, Luscher and Pohlmeyer 1978, Ogielski et a1 1981, Eichenherr and Forger 1979, 
Ablowitz et a1 1973, 1974, Zakharov and Shabat 1971, Crampin 1978, Chinea 1979, 
Sym and Corones 1979, Lund 1977, McIntosh 1981, Lamb 1976, 1977, Reiter 1980, 
h t k o  1981). Further clarification of their intrinsic connections would be of benefit 
for a deeper understanding in both cases. There is already a lot of heuristic geometrical 
analysis in the literature for AKNS systems, e.g. Sasaki (1979) has shown that all the 
AKNS equations in ( 1  + 1 )  dimensions ( K d v ,  MKdv,  sine-Gordon) describe pseudo- 
spherical surfaces (PSSS) (Sasaki 1979). Therefore it would be interesting to give the 
geometrical pictures of all the aforementioned features in the S0(3)/S0(2)  chiral 
model by using PSSS. 

Many authors have pointed out that the chiral model possesses a one parameter 
family of dual transformations ( DTS), which leads to an infinite number of conservation 
laws. As one of the authors remarked in an earlier paper (Hou 1980), the equations 
of motion are in dual symmetry with the Gauss-Codazzi equations (GCES) (Hou 1983, 
Hou et a1 1982). This dual property may be expressed as the dual matching between 
first and second fundamental forms on PSSS and induces the dual correspondence 
between SO(3) and SO(2, 1 )  symmetries. The former is the original symmetry of the 
S0(3)/S0(2)  chiral field. It is the SO(3) symmetry of the Euclidean space embedding 
the PSS, i.e. it corresponds to the SO(3) rotations of the moving frames determined by 
the second fundamental forms on the PSS. The latter SO(2, I )  is the symmetry of the 
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isometry group of these PSSS. This SO(2, 1) invariant metric is determined by the first 
fundamental forms. By constructing Killing vectors one may identify these two- 
dimensional metric spaces as the SO(2, 1)/SO(2) coset spaces embedding in the adjoint 
representation space of SO(2, I ) ,  i.e. as a two-sheet hyperboloid in the 3-Minkowski 
space. Thus we get the SO(2, 1) a-model naturally. This discrete dual symmetry may 
be generalised into DTS with continuous parameters. Then it is easy to see that the 
columns of the matrix representing these DTS of the chiral model are gauge equivalent 
to the scattering amplitudes of A K N S  systems, and the parameter of DTS corresponds 
to the spectrum parameter. 

This paper is organised as follows. In § 2 we discuss the DTS of the chiral field. 
In order to get the gauge covariant relations between the chiral model and PSS, all 
fundamental equations of the chiral model are expressed in gauge covariant forms. 
The explicit flat gauge and the explicitly reduced gauge have been introduced respec- 
tively. In § 3 it is shown that for any given solution of the chiral field, there is one 
and only one (up to homothetic transformations) PSS, such that the lightlike derivatives 
go along the asymptotic directions, while the chiral fields are induced by the normal 
image of this PSS. Meanwhile we have used the Euler-Lagrange equations (ELE) and 
GCES of the chiral field as the integrability conditions for this PSS. The dual symmetry 
between the SO(3) and SO(2, l )  a-model is shown also. In P 4 we consider the 
geometrical picture of the BT of the chiral field and find its direct connection with the 
classical BT of PSS. In § 5 we show that the one-parameter family of BTS is obtained 
by dual transforming the Bianchi transformation. In P 6 we consider various RES, both 
in the chiral model and in the AKNS systems, find their covariant relations, and discuss 
the geometrical meaning of the solutions. In P 7 the infinitely many local conserved 
currents are derived as the gauge transformed form of the Noether current of 
infinitesimal BT in the chiral model. In the appendix we consider the connection 
between the chiral model and the sine-Gordon equation and give the explicit 
expressions of the normal chiral field under reduced gauge in different coordinates on 
PSS. 

2. Gauge covariant formulation and the DT of the chiral field 

In this section we consider the O(3) a-model field N"(x)  (a = 1, 2, 3) in ( 1  + 1)- 
dimensional space {x; p = 0, 1). The dynamics are determined by the Lagrangian 

L = iTr(a,N(x)dpN(x)) (2.1) 

N*(x) = I ,  (2.2) 

N ( x )  = N"(x)a,; (2.3) 

with the constraint 

where 

here are the Pauli matrices. 
Thus, chiral fields N" (x )  are harmonic maps from two-dimensional Minkowski 

space into symmetric space S 2  - S0(3)/S0(2).  The equation of motion (ELE) will be 
obtained from (2.1) and (2.2) by arbitrary variation of N in S 2 :  

[d,a@N(x), N(x) ]  = 0. (2.4) 
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The Lagrangian has a global SO(3) symmetry generated by 

T = uaTa, T" =constant. 

Namely SL = 0 under 

SN = [ N ,  TI. 

Therefore we get the conserved Noether current J,  = Tr(K,T), which satisfies 

3, Tr( K p T )  = 0, (2 .5)  

where 

K ,  = - ;NapN.  ( 2 . 6 )  

In ( 2 . 5 )  T may assume any constant value in su(2) algebra, so we have 

a,K@ = 0, ( 2 . 7 )  

which is equivalent to ( 2 . 4 ) .  
From ( 2 . 2 ) ,  ( 2 . 6 )  it is easy to see 

{ K , ,  NI = 0, ( 2 . 8 )  

i.e. K , ( x ) ,  K , ( x )  as vectors in the adjoint space of SU(Z)-E,  are tangential on the 
sphere S 2  embedded in E3. Usually it is desirable to express these vectors by using 
moving frames with the third axis along the normal direction N ( x ) ,  this implies that 
we introduce local transformations ('gauge' transformations) as follows: 

K p ( x ) +  k " ( x )  = g - ' ( x ) K p ( x ) g ( x )  ( 2 . 9 ~ )  

where g ( x )  satisfy 

g - ' ( x ) N ( x ) g ( x )  = n = U,. ( 2 . 9 b )  

To get a unified S U ( 2 )  gauge covariant formulation for both K , ( x )  and k , (x )  we 
would like to discuss the more general case i.e. 

K , ( x ) +  K F ' ( x )  = S - ' ( x ) K , ( x ) S ( x )  ( 2 . 1 0 ~ )  

N ( x ) +  N " ' ( x ) =  S - ' ( x ) N ( x ) S ( x )  ( 2 . 1 0 b )  

where S ( x )  are arbitrary S U ( 2 )  matrices, i.e. in arbitrary moving frames with the third 
axis not necessarily coinciding with the normal direction. Now instead of the equation 
( 2 . 7 ) ,  we have 

~ " K ? ) ( x )  = - s - ' ~ * s K ? ) ( x )  + K y 1 ( x ) S - ' a @ S  

5 - [ A ' * ' " ( x ) ,  K ~ ' ( x ) ]  

(2.1 1 )  

Thus by introducing formally a non-dynamical pure gauge 

A ( s ) w ( x )  = S - ' ( x ) a v S ( x ) ,  ( 2 . 1 2 )  

we get a gauge covariant version of the equation of motion ( 2 . 7 ) .  From (2.10), (2 .12)  
it is easy to show that the gauge transformations between two different gauges S ' ( x ) ,  
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S " ( x )  are 

K ;  = S - ~ L S ,  N" = S - '  N'S ,  A: = S-'ALS + S-'a,S (2.13~1, b, c)  

where S = S'-lS". Besides the gauge covariance of KLS) and the gauge covariant relation 

Tr( K F ' N ' S ' )  = 0 (2.14) 

we may express K F ' ( x )  gauge covariantly in terms of A F ' ( x )  and N"'(x)  
K y )  = S - ' K  S = -LS-l 

= -1N'S)D'S'N'S) 
c1 Na,NS 

, (2.15) 
Hence if we subdivide AY' by introducing 

Hfl= A Y )  - K F )  (2.16) 

then from (2.13), (2.16) we see that H F '  changes as an SU(2) connection (gauge 
potential) under the general SU(2) gauge transformation (2.13) 

HL = S - I H L S  + P a p S .  (2.17) 

The crucial point for introducing H F )  lies in the fact that H F '  possesses an important 
property 

gCS)N'S) a + [ H ( S )  " S ) ]  = D'S)N(S) - [K(Sj  N'S' 
II Ir I r t  , , , 1 = 0 ,  (2.18) 

i.e. H f )  can be reduced to a U( I )  connection since there exists a section N ( x )  in coset 
bundle S0(3)/SO( 2) - S 2  which is invariant under the parallel translation with respect 
to the connection H F ) .  Hence the SU(2) covariant equation of motion (2.11) further 
simplifies as 

P (2.19) 9 F ) K ( S l P  , a P K ( S l  + [ H ( S ) P  K ' s l ] = o  
9 ,  

with an essentially U( 1 )  connection H F ' .  We may express HLS' also in terms of N'" 
and A?) 

P P P P + A Y )  
H ( s )  = -K(sj + A ' s )  = $N(S)D(S)N'S)  

= $ N i S ) a P N ( S l  ++ T ~ ( A ~ ) N ( S ) ) N ( S ) .  (2.20) 

Thus for given connection A?) and N"' we can always divide A;'' into a connection 
H F )  and a covariant K Y )  as (2.15) and (2.20) with the covariant property (2.14) and 
(2.18), such that H f )  can be locally reducible to U( l ) ,  while in the explicitly reduced 
gauge, k,(x)  (we denote the fields in reduced gauge by corresponding small letters) 
becomes explicitly horizontal. 

In  the special cases of S = 1, we have 

A',1'=0, K ' , 1 ' e K  , =-"a , N , H E ' = i N a , N  (2.214 b , c )  

(more properly we should use the notation A:) ,  K E ) ,  If:), N"' for A,, K,, H,, N 
respectively, but in order not to be burdened with superscripts we omit the superscript 

This is called the explicit flat gauge. In this gauge we see explicitly the existence 
of 'absolute parallel frames'-generators of symmetry--( TP = SP, i = 1,2,3)  over all 
points in space x,  underlying a ( 1  + 1)-dimensional Minkowski base. Now we gauge 
transform H , ( x )  to the explicitly reduced gauge, such that in gauge transformed frame, 

( 1  ) I *  
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N ( x )  is everywhere assumed to have constant n independent of x 

g - l ( x ) N ( x ) g ( x )  = n = c73, 

g ( x )  + g ‘ ( x )  = g ( x ) h ( x )  

h ( x ) n h - l ( x )  = n. 

meanwhile there still remains a U( 1 )  gauge freedom 

where h ( x )  satisfies 

169 

(2.22) 

Substituting S = g ( x )  in (2.12), (2.20), (2.15), we obtain the corresponding a,, h,, k, 
in the explicitly reduced gauge: 

a , ( x )  = h , ( x )  + k , ( x )  = g - l ( x ) a , g ( x ) ,  

h , ( x )  = f { g - ’ a , g ,  nln, (2.23) 

k , ( x )  = &-‘a ,g ,  n l n ,  
while (2.8), (2.18) become respectively 

{k, ,  n )  = 0, Eh,, n] = 0. (2.24) 

Namely with respect to the involutive operator n, the pure gauge a , ( x )  decomposes 
naturally into two parts, horizontal k , ( x )  and vertical h , ( x ) .  

By means of 
Tr( N(S’(gd‘S)K‘S’- g ( s ) K ( s )  

Y , ) ) = O  

we can express the zero curvature condition of the gauge potential AY’ as the GCES 

T r ( F F ~ N ‘ S ’ ) N ‘ S ’ = d , H $ ’ - d , H Y ’ + [ H I s ’ ,  H L s ’ ] + [ K F ’ ,  KIs’]=O, (2.25a) 

(2.256) F:S,‘-& Tr(F(S’N(S))N(S’ ,” = g ( S ) K ( S )  - g ( s l K ( s )  U ,  = 0 3 

where 

F:”y‘ = J,Ay’ - aJiy’ +[A?’, A:”]. 

In the explicitly reduced gauge these equations become 

a,h, -ah, +[h, ,  h v l =  -[k,, k,l 

= [*k,, *k,I ,  

9 , * k @  d,*k@ + [ h , ,  * k p ]  = 0, 

(2.26) 

(2.27) 

(2.28) 

where 

* k ,  = EwVkY ( E O I  = - & I O =  1). (2.29) 

These GCES are gauge covariant. They are trivial identities under the original flat 
gauge. Under the reduced gauge the equation of motion (2.19) becomes 

9%,k’ = it,k’ +[h, ,  k’] = 0. (2.30) 

The GCES (2.26)-(2.28) and ELE (2.30) are the gauge covariant fundamental equations. 
They are mutually dual under k, t*i*k,. From equations (2.28) and (2.30) we notice 
that k,  and * k ,  satisfy the same equation, so for the solution of ELE (2.30) of the 
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chiral field, we can use the real linear combinations of k, and * k ,  as follows: 

i , ( y )  = i , ( x ;  y )  =cosh cpk,(x) +sinh cp*k,(x), 

*c, (y)  = *C,(x; y )  =cosh cp*k,(x) +sinh cpk,(x),  

(2.31) 

where 

cosh cp = +( y + y - I ) ,  sinh cp = +( y - y - ' ) .  (2.32) 

It is easy to see that h,, c , (y)  satisfy similar fundamental equations (2.26)-(2.30) to 
h,, k,  respectively. That is h,(x)+ 6,(x; y )  is a pure gauge also. Hence, there 
exists some u ( x ;  y )  = u ( y )  such that 

h , ( ~ ) + c , ( ~ ;  Y ) = u ( x ;  Y ) ~ , u - ' ( x ;  Y ) = - ~ , u ( x ;  Y ) u - ' ( x ;  7 ) .  (2.33) 

In case of y = 1, this equation becomes (2.23) with 

u ( x ;  1) = g - ' ( x ) .  (2.34) 

Since h, and c,(y) satisfy similar equations to h, and k,, it is easy to show that they 
really give a chiral field N ( x ;  y )  = N ( y )  after gauge transformation to the correspond- 
ing flat gauge by choosing S = u - ' ( y )  i.e. let; 

(2.35) 

Then from equations (2.33), (2.35) we obtain 

K, (y )=  - f f , (y)  = -+N(Y)a ,N(Y) ;  (2.36) 

from (2.30) and its gauge covariance we obtain 

apKW(Y)+[H, (Y) ,  K + ( r ) l = O .  (2.37) 

Thus we see that N ( y )  is a new solution of the ELE (2.4). This solution may be related 
directly to the original N ( x )  

(2.38) 

U ( Y )  = d X ) U ( Y ) .  (2.39) 

Here we have used (2.22), (2.35) and chosen (2.34) to get 

U ( l ) =  I (2.40) 

where I is the 2 X 2  unit matrix. From (2.39), (2.33), (2.23) the operators U ( y )  satisfy 

(2.41) 3,U(Y) = -(ff, + K A Y ) )  U ( Y ) ,  

where 

kp( y )  = gi,( y)g- '  = cosh K ,  + sinh cp* K ,  

= U ( Y ) K , ( Y ) U - ' ( Y ) .  

(2.42) 

(2.43) 

Thus the dual transforming operator U ( y )  in (2.41) (Pohlmeyer 1976) may be under- 
stood to be gauge equivalent to the expression (2.33), conversely, the integrability 
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conditions of (2.41) or (2.33) respectively imply the equations of motion and GCES in 
flat or reduced gauge in each turn. 

3. From the chiral field to PSS 

In this section we shall show that for any given solution of the chiral field N(x) ,  we 
may find one and only one PSS X '  (x )  ( i  = 1,2,3) with curvature - 1 which is embedding 
in the same three-dimensional Euclidean space (the adjoint representation space of 
SU(2)) as the chiral sphere, such that the lightlike direction (5= t +x, 7)  = t -x )  

5 = constant or 7 = constant 

on the base space x have been mapped onto the PSS X as the asymptotic curves, while 
the spherical representation of the normals of X induce the given chiral solutions on 
S 2 .  Now we construct the second and first fundamental forms wV, w,  of the required 
PSS in terms of h, and k,, which represent the chiral field in reduced gauge. Then, 
using the fundamental equations of chiral field (2.26)-(2.30), we can prove the integra- 
bility of the structural equations of the required PSS. Thus the surface with above 
mentioned wlJ and w ,  does actually exist, meanwhile it happens that the curvature of 
the constructed surface is really - 1. 

Let e,(x) ( i  = 1,2,3) be the moving frame fields along the required PSS X ,  here 
e3(x) has been chosen as the normal direction, and we let 

e3(x) = N ( x )  
to ensure that the normal image of the PSS describes the given chiral field N(x) .  We 
have the Gauss-Weingarten formula 

de,(x) = w,(x)e,(x), (3.1) 

where w,(x) are the second fundamental forms of X (pulled back to the base space x). 

(3.2) 

For consistency with (2.22), we choose 

g- (x)  e: ( x ) gag (x = ai. 

Differentiating the above equations and using (3.1) it is easily verified that 

so we get 

g-l dg = -iiEabC wbc'a 

(3.4) 
w 2 3  + i w 1 3  = 1- - -21 

- O 2 3  - iwl3  -wiz 

If this result is compared with (2.23), we then obtain the relations between the chiral 
field h,, k, and the second fundamental forms: 

i.e. 
h, dx, = -$wi2a3,  

k, dx+ = - i i (w23ci  - 0 ~ 1 3 ~ 2 ) .  

(3.6) 

(3.7) 
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Then integrability conditions dde, = 0 may be written as 

d n "  = a'' A a", 
or 

(3.8) 

dwl2= -*I3 A w23, dw13 = w 1 2  A 0 2 3 9  dw23 = - w I 2  A ~ 1 3 .  (3.9) 

By means of (3.5) the above equations in terms of h,, k, are the GCES of the original 
chiral field (2.26), (2.30). We see the algebra of 0'' is su(2), which is the symmetry 
of the original chiral field (the symmetry of its Lagrangian). Obviously, equation (3.8) 
is the integrability condition of (2.23) or (2.33) with y =  1, which may be written as 

du(x ;  1 )  = n " u ( x ;  l ) ,  (3.10) 

here 

u(x ;  1 )  = g- '(x).  

Now we turn to construct the fir$ fundamental forms, which satisfy 

d X = w , e l  +w2e2. (3.1 1 )  

Since the discrete dual symmetry of the chiral fields i* k,, h, satisfy the similar equations 
as k,, h,. Define 

W I ( X )  = *w*3(x), w2(x) = -*w,,(x), (3.12) 

where * is the Hodge star of the differential forms 

*dt = dx, 

*d[ = dt ,  *dq = -dq (** identity transformation). (3.13) 

*dx = dt  (i.e. *dx, = E,, dx"),  
so 

By using (3.7), (3.12), (2.29) we can express w,  in terms of *k, 

~ ( w 1 u , + w 2 u 2 )  = ~ ( * W ~ ~ C T ~ - * W ~ ~ ( T ~ )  =i*(k, dx,) 

= i* k, dx,. (3.14) 

So the integrability conditions are respectively as follows 

(1 )  W a  A Wa3 = 0. (3.15) 

By means of (3.71, (3.14) the above equation becomes 

Tr([N, K , ] * K , )  d d '  A dx" = Tr(a,h'&,,Na,N) dxl" A dx" =0,  

so (3.15) really is satisfied. 

(2) dw, = w12 A w2, dw2 = w ,  A w12. (3.16) 

By virtue of (3.6), (3.14) above equations are identical to the equations of motion (or 
equivalently the dual transformed Codazzi equations), so they are satisfied also. 

In short, the structural equations with ansatz (3.6), (3.14) are integrable, i.e. the 
surface with such fundamental forms exist. Now we consider the property of this 
surface. From (3.9), (3.12) it is easy to show that 

(3.17) d o l 2  = - w 1 3  A w23 = *w13 A * ~ 2 3  = -w2  A wI. 

This implies that the curvature of surface X is -1 everywhere, i.e. it is a PSS. 
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By virtue of (3.1), (3.1 l) ,  (3.7) and (3.14) 

de3.dX = t i  Tr( N [ K , ,  K , ] )  de  dq, (3.18) 

so d[ and d q  are the asymptotic directions. Notice the dual symmetry (3.12) of 
fundamental forms on PSS in the asymptotic system of coordinates, let 

-0' w ,  - iw, 
h, dx, +i*k, dx" = (3.19) 

then the equations (3.16), (3.17) can be collected together in the similar way as equation 
(3.8) 

(3.20) 

They are the ELE and dual transformed Gauss equation of the original chiral field 
(2.27), (2.30). The algebra of a' is su( 1,  I ) ,  this is the symmetry of isometry group of 
the surface with negative constant curvature. Similarly as (3.10) we can write R' as 
the Maurer-Cartan form of group SU( 1, 1) 

du(x)  =Q 'u (x )  (3.21) 

where u(x) E SU( 1, 1). The integrability condition of this equation is the Maurer- 
Cartan equation (3.20). 

Above we apply only the discrete dual symmetry (Hodge dual of K , )  of the 
fundamental equations (2.26)-(2.30). Below we further apply the symmetry of con- 
tinuous DT. Then from a given solution of chiral field N(x) ,  we can construct a family 
of different PSSS X(y) ( y  is a real parameter). For this purpose we introduce a family 
of w,(x; y )  = &,, as follows: 

dR' = R' A 0'. 

U 1 2  = WIZ, (323 = cosh +sinh Q W , ,  

613=cosh ~0~13-s inh  c p q ,  3,  =cosh cpw, +sinh cpw2,, (3.22) 

(3, = cosh cpw2 - sinh cpwI3. 

We can prove as before that the structural equations of the system G,,, (3, are integrable, 
the surface X( y )  exists, and its curvature is - 1 .  Now by means of the Lie transformations 
of the original PSS, we obtain a family of new PSSS. Meanwhile the equations (3 .9 ,  
(3.10), (3.19) and (3.21) may be generalised as follows: 

d 4 Y )  = fl"(y)u(y), (3.23) 

where 

(3.24) 

(3.25) 

iw , ,  (3,-iG2 
3 , + i G 2  -iw,,  a'( y )  ; 

= - (h ,  dx, + i * s  dx"). (3.26) 
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By using the fundamental equations of the chiral field it is easy to see that both above 
systems of equations are integrable, i.e. 

(3.27) 

The former (3.23) is the su(2) linear scattering equation in Lund and Regge (1976), 
and the latter (3.25) is the su( 1,  1 )  linear scattering equation in Sasaki (1979). 

dn" (  y )  = Cl"( y) A Cl"( y), d n ' (  y) = Q'( y) A a'( y) .  

From (2.3 1 ) we get 

,Cp(iy) = i*,C(y), (3.28) 

so that 

n"( iy)  = a'( y), (3.29) 
hence 

4 iY)  = 4 Y ) .  

This shows that when the parameter y is an imaginary number, the algebra of symmetry 
changes from su(2) to su(1, 1). In fact, if we define the extension of the solution of 
the chiral model 

(3.30) N(i 7) = M (  Y), 
M ( y )  = U-'( iy)NU(iy)  = u-'(iy)nu(iy) 

= v-'(y)nv(y) = v-I(y)u3v(y). (3.31) 

It is easy to see that M is a unit vector in O(2, 1) adjoint space (three-dimensional 
Minkowski space), 

M a M a  = 1, M a  = fTr(Mp"),  (3.32) 

where p a  is the generators of su( 1, 1 )  

P3 = ff3, PI = i o , ,  P2 = ic+z, (3.33) 

g33 = -g ,  I  = -g22  = 1 .  (3.34) 

Now M is a chiral field along SO(2, 1)/S0(2),  which appears as the surface of a 
hyperboloid in three-dimensional Minkowski space. The metric on hyperboloid may 
be given as 

f Tr(dM(  y))' = Tr(d N(iy))* = -2 Tr( K,(i y)K,(i y) dx'" dx" )  

= 2 Tr(*K,(y)*K,(y) dx'" dx" )  = -(dX(y))'. (3.35) 

It is interesting to point out that a surface with the same intrinsic metric (3.35) may 
be embedded in two ways, either as a PSS X(y) in Euclidean space or as a hyperboloid 
M ( y )  in Minkowski space. 

4. BT of chiral field and its geometrical picture 

The BT equation of chiral field has been given as in an earlier paper (Hou 1980) 

Nd,N - N'd,N'= E ~ ~ ~ " ( N N ' ) .  (4.1) 
It is easy to see that if N ( x )  is a solution of the ELE (2.4), then "(x) in the above 
equation is also a solution and vice versa. 
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In § 3 we show that the chiral field N ( x )  may be described by the Gauss image of 
the PSS. As is well known, there exist BTS between the PSSS. In this section we shall 
show that the equation (4.1) is equivalent to the classical BT between the PSSS, thus 
give the equation (4.1) some explicit geometric pictures. 

N ( x )  = N a ( x ) u a  = e,(x) .a ,  

Let 

N ' (x)  = N'"(x)a,  = e;(x) .o ,  (4.2) 

and choose the common tangents of corresponding PSSS X and X '  as 

e l (x)  = e',(x) = e3(x)eS(x)/le3(x)eS(x)l. 

Express the matrix NN' in terms of e , ,  

B = N N " = c o s  Ol+isin 6 ( e , . u ) ,  

(4.3) 

(4.4) 

where O is the angle between N ( x )  and N'(x) .  By virtue of equation (4.1) and 
N'= NI '=  I we get 

a,(B + B + )  = 0 (4.5) 

so 

B + B + = 2 e 3 ( x ) . e < ( x ) = 2 c o s  eI=constant.  (4.6) 

Hence O is a constant not relying on t and x. From (4.3) 

e;(x) =cos Oe,(x) +sin Oe,(x), 

e i (x)  =cos Oe,(x) -sin Oe,(x). 

The Gauss-Weingarten formula is written as 

= w!J 'J2 de: = wkei 

Since 6' is a constant, we get 

= 

w{,=cos 6wI3-sin Ow,,, 

W { ~ = C O S  Owlz+sin 6~13.  

From (4.2), (4.8) we get 

N d N = i [ - w , , ( e Z * a )  + ~ 2 3 ( e , * u ) ] ,  

N '  d N '  = i[-wI3( e; * U) + w;,(e{ a) ] .  

By using (4.9), (4.10) the left-hand side of (4.1) becomes 

(4.9) 

(4.10) 

N d N -  N ' d N ' =  -isin @[(sin @wl,+cos Ow,z)e,-u+(sin Ow,,-cos O w , , ) e , - a ] ,  

the right-hand side of (4.1) yields 

E,,PB dx, = -*(dB) = - i  sin O(*wlzez.a +*w,,e3-u) .  

By comparing corresponding terms we get 

*wiz= sin Owl3 +cos 6w12, 

* w I 3  = sin O W , ,  -cos O W , , .  

(4.1 1 )  

(4.12) 
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Substituting (3.12) in (4.12), we get 

w 2 =  cos - sin Owl2, (4.13) 

which is the classical BT equation in the coordinate systems with the common tangent 
as base e, (Chern and Terng 1980). 

After taking the Hodge star of (4.1 l ) ,  we get 

w I 2  = sin 6 * w l 3  +cos 0*wI2,  

by substituting this in (4.11) we may eliminate *wiz to obtain (4.12), hence (4.11) and 
(3.12) are equivalent. 

Comparing (4.13) and (4.96) we get 

w{3 = w2. (4.14) 

Taking the Hodge star expression of equations (4.90) and (4.14) respectively we get 

w’l = wj,  w ;  = 0 1 3 .  (4.15) 

So after BT the new PSS X‘ satisfies 

d X ’ =  w ’ ; e {  + w ; e ; = w , e ,  +w13(cos &,+sin 6e3)  

= d X  +sin 0 de,.  (4.16) 

After integration we get 

X’ = X’ +sin Be,, (4.17) 

where the integral constant has been chosen to be zero. 
Equation (4.6) shows that the corresponding normals of two PSS differ by a fixed 

angle O around the common tangent axis el(x) = e{(x) .  Simultaneously, equation (4.17) 
shows that the corresponding points of PSSS translate a fixed distance sin 0 along e,(x), 
so that the common tangents between two PSSS constitute an equidistant congruence 
of lines. In short, we may see that under ansatz (3.14), the BT (4.1) of chiral field (with 
its consequence (4.4), (4.6)) realise the classical BT (4.7) between two PSSS. 

5. BT and DT 

Pohlmeyer (1976) has shown that the one parameter family of BT(O) may be generated 
from the Bianchi transformation (BT(0 = 7r/2)) by DT as shown by the following 
diagram: 

DT U ’ ( Y )  I 
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Here the BT are given by (4.10), (4.4) with the moving frames chosen as follows: 

e3(x) = N ( x ) ,  

e3(x; Y) = N ( x ;  7) = N ( y ) ,  

ie, * U = ie: U = (l /sin 6)[N ,  N'], 

iel(y) U = ie,( 7)' * U = [ N ( y ) ,  N(y)'l. 

N ( y )  = u - ' ( Y ) N U ( y )  = u - l ( ? ) n 4 Y ) ,  

~ ' ( y )  = u ' - ' ( ~ ) N ' u ' ( ~ )  = u' - ' ( y )nu ' (y ) ,  

e;(x) = N ' ( x ) ,  

ei(x;  y )  = N ' ( x ;  y )  = N ' ( y ) ;  

(5.1) 

( 5 . 2 )  

While the DT are given by 

(5 .3 )  

where the dual transforming operators U (  y) ,  U'( y )  satisfy 

a,U(y)=f(Na,N(cosh cp - 1 )  +&,,Na"N sinh cp)U(y),  

aFU'(y)= -(N'd,N'(cosh cp- 1)+ ~,+,N'a"N'sinh cp)U'(y).  (5.4) 

N ( y ) ' =  "(Y) ( 5 . 5 )  

In this section we shall show that 

implies a definite relation between the rotation angle 6 and the dual scale y as (5.1 1) .  
Using the RE in flat gauge one of us (Hou 1980) has already obtained this relation 

between 6 and y. Since in 0 3 we have established the correspondence between chiral 
field and differential forms on PSS, we now reconsider this relation in reduced gauge 
in terms of differential forms. 

In case of ( 5 . 5 ) ,  we can further choose e{(?) as 

i e{ ( y )  * U = [ N( y ) ,  N'( y ) ]  = ie, ( y)' - U. (5.6) 

Then by using (3.22) for the D T ( ~ )  and (4.9), (4.14), (4.15) for m(e)  in 'common 
tangent coordinates', we get the following equalities: 

DT(Y) BT( e )  
Route 1 X ' - ( y )  - X '  - X 

w i ;  = cosh q w i 3  -sinh cpwS = cosh cpw, +sinh cpw13, 

w 6  =cosh +sinh cpwi =cosh ~pw23 +sinh cpw,, 

w ; ;  = w { 2  = cos @ w 1 2  +sin 6 ~ 1 3 ,  

w i -  =cosh (PO; +sinh cpw5, = cosh Q W ,  +sinh (OW,,, 

w;-=cosh cpw5-sinh cpwi,=cosh cpw13-sinh cpw,. (5 .7)  

& i 2 =  &,,=cosh cpw,,-sinh cpw,, 

&I = (3, =cosh cpw, +sinh 

6; = & I 3  = cosh ~pw13 -sinh cpw,. ( 5 . 8 )  
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The differential forms in (5.7) are required to be equal to those in (5.8) respectively 

4; = U;-, & ; = U ; - .  (5.9) 

Thus we get 

- w 1 2  = cosh (pa2 - sinh cpwI3, 

cos Ow,,+sin 8wl,=coshcpw,,-sinhcpw,. 

By comparing these equations with (4.13) we get finally 

cosh cp = l/sin 8, sinh cp =cot 8, 

where 

cosh cp = ( y + y-’)/2. 

(5.10) 

(5.1.1) 

Conversely, if y and 8 satisfy (5.1 I ) ,  the differential forms obtained from two 
different routes are the same, hence the corresponding surfaces will be identical, and 
so yield the coincidence of their normals (5.5). In short the equality (5.5) will be 
fulfilled if and only if the relations (5.1 1 )  are satisfied. 

Finally we express the p0st-B-r operators g’(x) = u’-’(x; I ) ,  u’(x;  y), u ’ ( x ;  y) = 
g’(x)u’(x; y)  in terms of the ante-sr operators g(x),  u (x ;  y), U(x;  y)  in the frame 
(5.2). Since geometrically, BT implies a rotation 8 around the common tangent, we have 

g‘a,g’-’ = e; * U = exp(ie, * ae/2)ei .  U exp(-ie, ~ e / 2 )  

= exp(ie, - ~ 8 p ) g a ~ g - I  exp(-ie, .ae/2) ,  

then by virtue of the Schur lemma 

g’(x) = exp(ie,(x) - a8 /2 )g (x )  = g(x)  exp(ia18/2). (5.12) 

Similarly we obtain 

u’(x; y )  = u ( x ;  y )  exp(-ie,(x; y ) “ r / 4 )  

= exp( -ic+, 7r/4)u(x; y) ; (5.13) 

U’(x; Y )  =exp(ie1(x).(re/2)U(x; y)  exp(-ie,(x; y ) - a r / 4 )  

= g exp(ia,(8 - r /2 ) /2 )u (x ;  y). (5.14) 

6. RES and its relation with the AKNS systems 

In 0 4, we assume that the BT equations (4.1) are fulfilled. Then if N(x )  is a solution 
of the ELES (2.4), N’(x)  will also be a solution of (2.4). But we must make certain 
whether or not the BT equations (4.1) are consistent for any given N(x) .  In order to 
solve this problem we introduce the matrix B 

NI= NB. (6.1) 

Substituting this into (4.11, after eliminating N’(x) ,  we get the equations about B. If 
these equations are consistent, we can find out B, then from (6.1) N’ will be obtained. 
In this section we shall show that these equations are just the RES, and their integrability 
conditions are the ELE and GCES. We also discover that (4.1) is a strong BT. 
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Thus from (4.6), (5.10) we get 

B + B’ = 2 tanh cpZ. (6.2) 

Let 

6 =cosh cp(B - B‘)/2. (6.3) 

Combine it with (4.1), we get the matrix RE. 

9 J p 6 = d a , 6 + [ H , ,  6]= - ~ ~ ~ ( k ” + f i k ’ f i ) ,  (6.4) 

From 5?pkp = O  and (2;33) we see easily that the above equations are integrable. 
Substitute the obtained B i n  (6.3), (6.2) to get B, then (6.1) gives the new solution N’(x) .  

The operator B(x)  expresses a rotation from N ( x )  to N ’ ( x ) ,  i.e. rotates a certain 
angle 0 about the common tangent of two PSSS. Therefore obtaining B(x)  is equivalent 
to finding the direction of the common tangent. Let S be the angle between the required 
direction of the common tangent and the first axis e , (x)  of a certain moving frame (in 
0 4 we have adopted the particular case 6 = 0). 

B =  N N ’ = c o s  OZ+isin O a . ( e , c o s 6 + e 2 s i n 6 )  

= exp(e6) ,  (6.5) 

where 

fi = i a . ( e ,  cos s +ez sin 6 ) .  (6.6) 

This satisfies 
A B2=-Z, fi+ = -jj, 

and can be expressed as 

where P is the projection operator 

PZ=P. 

p ( g d ,  + &(-iy))(P - I )  = 0, 

( I  - ~ ) ( g ,  +k , ( iy) )P  = 0. 

Substituting (6.8) in (6.4) yields 

(6.10) 

Thus the matrix RE is equivalent to the equations of projection operator P in the 
Riemann-Hilbert formulation of Zakharov and Mikhailov ( 1978). 

Now we simplify the matrix equations into scalar equations by using the reduced 
gauge, then (6.4) becomes 

(6.1 1 )  d 6  + [ h ,  dxl”, 61 = [*lp dxl”, 616, 
where 

(6.12) 

r = exp( -i6), r-I= exp(i6). (6.13) 
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Substituting (6.12) and (6.13) in (6.11), we actually get two scalar RES: 

d T =  -(GI -iG2)/2+iw,,T+(G1 +iG2)r2/2,  (6.14) 

d r - '  =-(GI +iG2)/2-iw,2r- '  +(GI -iG2)/2. (6.15) 

Both these RES have su( 1, 1) symmetry. They are nothing other than the nonlinear 
representation of the following linear scattering equations 

(6.16) 

where (:;) is a column of the matrix v ( y )  of equation (3.25). As can be easily seen, 
the scalars 

r = r-I = - v 2 / v I ,  (6.17) 

satisfy equations (6.14), (6.15) respectively. So the RES of the chiral field are connected 
with the RES of the linear scattering equation in the AKNS systems, and both are related 
to the first fundamental form Q ' ( y )  of the surface with negative constant curvature. 
Its geometrical implication is obvious by noting that the solution r = exp(-i6) deter- 
mines the rotation from the axis e, of the chosen frames to the common tangent in 
the BT. Finally, we show briefly the origin of the ordinary BT in the sine-Gordon 
equation. From § 4 we know that w 2  = w ; 3 .  Writing this equation explicitly in terms 
of the expressions in table 1,  we get a = p' ,  a' = p, where a ( a ' )  are the angles between 
asymptotes ante-(post-)sr  while p ( p ' )  are the angles between the curvature line and 
the common tangent. Now in ordinary iso-spectrum formulation one of the axes has 
been chosen along an asymptote, hence the angle -8 equals (a - p ) / 2  = ( a  - a ' ) /2 .  
Thus we get the geometrical explanation of this ansatz, which is just the keypoint for 
getting the BT from the RES. 

Table 1. The fundamental differential forms on PSS. 

In principal In asymptotic In common tangent 
curvature coordinates coordinates coordinates 

7. Noether current of the BT and infinitely many more conservation laws 

In this section we introduce an infinitesimal BT with parameter y, which shifts the 
Lagrangian of the chiral model by a total divergence. Therefore it generates a Noether 
current with parameter y. Then in reduced gauge, we express this Noether current by 
quantities on PSS, which are equivalent to ordinary local current in the AKNS systems. 
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Let 
SN = N&, 

where l? is a solution of (6.4). (For simplicity we omit the constant E in future.) 
Defining 

(7.1) 

after using the equation of motion (2.7), we have 

a j ,  = SL = Tr(K,Pl?). (7.3) 

Thus if Tr(K,a”l?) = O  as in the case 2f y = 1 ,  then j, (7 .3)  is the ordinary conserved 
Noether current. Generally Tr(K,P’B) is not zero, but we will show that it can be 
expressed as a total divergence 

Tr(K,P&) = -a,i”(x; y),  (7 .4)  

such that we may construct a generalised conserved Noether current 

J,(x; y )=j , (x ;  y)+i,(x;  Y ) .  (7 .5)  

By use of the RE (6.4) and equation (2.42), it is easy to show 

Tr(K,ap&) = -2 sinh cp Tr(K,K, + K,li?Kpl?l 

= -tanh (pa, Tr(*Kph) = -a , i ” (x ;  y). (7.6) 
Finally we get the conserved current 

- A  

J,(x; y)  =j,(x; y)+i , (x;  y) = sech cp Tr(K,B) 

= sech cp Tr( k+&), (7.7) 

where the gauge covariance has been used. More simply, utilising the fact that in 
common tangent coordinates r = 1, then from (6.17), (3.26) it is easy to get 

*J, dx” =sin e&,. (7 .8)  
Taking the exterior differentiation of the above equation we get 

sin e d&, = (a*J,/ax“)EP” dxo A dxl = -(dJ@/ax”) dxoA dxl = 0. 

So the conservation of current can be expressed as 

d&, = 0. (7 .9)  
Since in common tangent coordinates wiz= -&, equation (7 .9)  is also a con- 

sequence of equation (3.16). The J,(x; y)  constitutes a one-parameter family of 
conserved currents, hence they can be expanded in inverse powers of y to get the 
infinite number of conservation laws, which is the same result as that obtained by 
expansion of Riccati functions. 

8. Discussion 

The results of this paper may be generalised into the O ( N )  a-model, C P ( N )  model 
etc by using localised involution operator N ( x )  ( [ N ,  .r)] = 0, { N, K }  = 0, K + 7 = 8). 
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Then we can show the existence of a corresponding two-dimensional surface X with 
d X  = [ N ,  *dN]. Its first and second fundamental forms are mutually dual, the 
asymptotes go along lightlike derivatives. Its Gauss image induces the chiral solution 
but the curvature of these surfaces is not generally constant. But even in the reduced 
gauge, the RE remains as a matrix equation in some subgroup. Details are under 
investigation. 

Our PSSS are a concrete example of the 'soliton surface' called by Sym (1982). For 
the Ernst (1968) equation written in the Maison (1979) normalised form we can obtain 
a similar surface with 'lightlike' asymptotes. However its curvature instead of being 
constant, now becomes proportional to IgFUI-l. In this case the BTmay also be expressed 
explicitly as the transformation between two corresponding surfaces, we have already 
found expressions similar to (4.1), (4.17), (6.4) and (6.10). These are consequences 
of the Lelieuvre formulae (Eisenhart 1909). 
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Appendix. Relation between the equation of the chiral field and the sine-Gordon 
equation 

From the equation of motion we get conservation of energy and momentum as 

i), Tr( N : )  = 0 ( N ,  = d e w ,  

d, Tr( N : )  = 0 ( N ,  = d,N). (Al )  
So we may assume 

Tr(N,N,)/2=Nt.N, = - r ( t ) s (7 )cos  a ( ( ,  7). (A21 
Choosing 

e ,  = ( r-'NS + s-'N,,)/2 sin a / 2 ,  

e,= -(r- 'N,-s- 'N7)/2cos a /2 ,  

e, = N, 

gives 

de, = ( r  d t  f s  d 7 )  sin &e, - ( r  d t -  s d 7 )  cos Iae,. 

By comparing with the Weingarten formula we get 

w , , = - ( r d t + s d ~ ) s i n ~ a ,  

02, = ( r  d t  - s d7)  cos +a. 

(A31 

(A41 
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By applying the GCES we obtain 

f f , ,  = r(5)s(77) sin f f ,  

w , , = f ( ~ ,  dt -a , ,  dv) .  (A7) 

(A61 

The equation (A6) may be called the generalised sine-Gordon equation. By further 
use of the dual symmetry of the chiral field we get 

w l = * ~ * 3 = ( r d 5 + s d 7 7 ) ~ ~ ~ f ~ ,  

w2 = -*wI3  = ( r  d5-  s d 7 )  sin fa. (A81 

From (A7) and (AS) it is easy to show that the corresponding surface has Gauss 
curvature K = - 1 .  

Since the chiral fields are conformal invariant, corresponding to any chiral field 
there exists a solution with 

” ( 5 ’ 9  77’) = N5(5’), 777(77’)), 

d5’= r ( 5 )  d5, 

where 5(5’), ~ ( 7 7 ’ )  are solutions of 

d77‘= 477) d77, 

then 

Tr( N:.)/2 = Tr( N2,.)/2 = 1, Tr(N,.N,.)/2 = -cos a ( [ ,  77). 

The forms on PSS become 

~,2=(a*,d5’-a , , ,d77’) /2  

W ,  = c o s 4 a ( d ~ ’ + d ~ ’ ) = c o s f a  dt‘, 

w 2  = sin fa(d[’-dq’) = sin f a  dx’. 

Their integrability conditions turn out to be the sine-Gordon equation 

a,’,,, = sin a. 

The solution, which satisfies the normalisation condition (A10) will be called the 
normal chiral field. We stress that although under conformal transformation of 
independent variables 

5 = 5(5’), 77 = 77(77’), (‘413) 
a different solution (conformally similar) of the chiral field equation has been obtained: 

However, since 

N ;  d5’= Nt d5, K ;, d t ’  = K ,  d5, * K ,  d5‘= * K ,  d,$ etc 

the fundamental forms are the same, which correspond to one and the same PSS. 

However, a,, d, (or a,., a,.) remain the asymptotic directions. Only the scale of the 
image from the base space 5, 77 to PSS has been changed. We must distinguish the 
conformal transformation of independent variables from the dual expansion and 
contraction. The dual expansion and contraction is that, which with respect to any 
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given solution N ( [ ,  q), enables one to find a new solution N(5,  v ;  y )  such that 

where all equalities stand on the same 5, q. But in the conformal transformation (A14) 
.$I, q' and 5, q are different points. It is easy to see that after dual expansion and 
contraction all the first and second fundamental forms have been changed, we arrive 
at a new PSS with Gauss image N (  5, q ; y )  ; meanwhile the parameter y of expansion 
and contraction corresponds to the ordinary spectrum parameter. 

On PSS we can choose the moving frame as (A3), which may be called the principal 
curvature coordinates. If one of the asymptotic directions has been chosen as e,(x) 
(or ez(x)), they may be called asymptotic coordinates. In these coordinates the spectrum 
parameter y may be expressed explicitly as the eigenvalue of the linear scattering 
equation. To consider the BT as in 99 4 and 5, it is convenient to choose the common 
tangent as e,(x), which have been called the common tangent coordinates. In table 1 
we show the fundamental differential forms of PSS in various coordinates. In table 2 
we give the explicit expressions of the normal chiral field under the reduced gauge in 
terms of quantities of PSS. 
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